

SATURN PROBE MISSION FEASIBILITY & TRADES

BASED ON NASA FUNDED STUDIES

Prepared by

Dr. **Tibor S. Balint**JPL/Caltech

Presented at the 5TH INTERNATIONAL PLANETARY PROBE WORKSHOP IPPW5

BORDEAUX, FRANCE

June 23-29, 2007

Acknowledgments – Past Saturn Probes Study Teams

Page: 2

FY06 Saturn Probes Study Team (SPST):

- Doug Abraham - DSN / Telecom (JPL)
- Gary Allen Probe descent (Ames)
- Dave Atkinson Science (U of Idaho)
- Tibor Balint - Study lead, Architectures, Power (JPL)
- Trajectory visualization (JPL) Rob Carnright
- Telecom. Architectures (JPL) Bill Folkner
- Sergey Gorbunov Probe CAD (NASA Ames)
- Helen Hwang - TPS, costs (NASA Ames)
- Anil Kantak - Telecom (JPL)
- Theresa Kowalkowski - Trajectories (JPL)
- Try Lam Trajectories (JPL)
- Ed Martinez - TPS, costs, E/D (NASA Ames)
- Dave Morabito - Telecom (JPL)
- Bill Smythe - Science, Instruments (JPL)
- Tom Spilker - Architectures, Attenuation, Science (JPL)
- Nathan Strange - Trajectories, Architectures (JPL)
- Bill Strauss Probe entry / descent (JPL)
- Mike Tauber - TPS, E/D (ELORET Corporation)

2006 Planetary Science Summer School, Team-2 (PSSS-2): Aubrey Watson (Project Manager),

 Shadrian Strong (PI),

 Olivia Dawson (Probe Co-I), · Justin Likar (Fly-by Co-I),

· Andrew Aubrey (Science). Nathan Bramall (Thermal),

· Andrew Chereck (Instruments), · Gerardo Dominguez (Power),

(Structures), · Eric Hultgren Joseph Levy (Cost),

(Propulsion/Attitude Contol), Thomas Liu

· Megan Madden (Ground Systems),

 Catherine Plesko (Telecom),

(Structures & Configuration), Deborah Sigel Yuki Takahashi (Systems Engineering), Shane Thompson (Software/Science),

 Krista Soderlund (CDS).

· Bradley Thomson (Risk/Programmatics),

· David Wiese (Mission Design)

PSSS Mentor & Administrative Support (JPL):

· Tibor Balint & Anita Sohus, CoCo Karpinski, Jean Clough

Study Sponsor:

NASA's Planetary Science Summer School

SUMMER SCHOOL FOR PLANETARY SCIENCES

THE MISSION LIFECYCLE PROCESS

FY06 Study Sponsors:

Curt Niebur - NASA HQ

James Cutts 4X Chief Technologist (JPL)

Additional thanks for their support to:

Jennie Johannesen (trajectories); Sam Gulkis (MWR),

Ted Sweetser, Keith Warfield, and Team X

- Science measurement objectives
- Initial assumptions for Saturn multi-probes studies
- Probe and carrier notional science instruments
- Key mission architecture stages & elements
 - Trajectory options
 - Key mission drivers for the carrier s/c
 - Key mission drivers for the probes
- Conclusions & recommendations

Science Measurement Objectives

Key: Comparative planetology of well-mixed atmospheres of the outer planets is key to the origin and evolution of the Solar System, and, by extension, Extrasolar Systems (Atreya et al., 2006)

Origin and Evolution

- Saturn atmospheric elemental ratios relative to hydrogen (C, S, N, O, He, Ne, Ar, Kr, Xe)
- Key isotopic ratios (e.g., D/H, 15N/14N, 3He/ 4He and other noble gas isotopes)
- Helium abundance relative to solar & Jupiter
- Gravity and magnetic fields

Planetary Processes

- Global circulation
- Dynamics
- Meteorology
- Winds (Doppler and cloud track)
- Interior processes (by measuring disequilibrium species, such as PH3, CO, AsH3, GeH4, SiH4)

NASA - Cassini: PIA03560: A Gallery of Views of Saturn's Deep Clouds

Initial Assumptions for Saturn Multi-Probes Studies

Required → driven by Science Objectives:

- Two (2) shallow probes to 10 bars
 - Latitude location: dissimilar regions (zones/belts)
 - E.g., two sides or the ±13° Equatorial zone
 - Relay OR Direct-to-Earth communication
- Microwave radiometry (MWR) to ~100 bars
 - MWR on carrier
 - Carrier options: Flyby or Orbiter
- Fields and particles
 - Saturn's gravity field
 - Saturn's magnetic field

Ref: S. Atreya; T. Balint & FY06 Study Team members

Programmatics:

- New Frontiers class mission
 - Cost cap assumptions: today's \$750M
 - Next NF Opportunity: ~ 2015
- Potential International Collaboration
 - Cosmic Vision KRONOS proposal

Probe & Carrier Notional Science Instruments

Assumed for Saturn Probes & Flyby S/C in Previous Studies – Galileo Probe Heritage

Shallow Probe to 10 bars				
ASI	- Atmospheric Structure			
NEP	Nephelometer			
HAD	 Helium abundance 			
NFR	 Net flux radiometer 			
NMS	- Neutral mass spectrometer			
LRD /EPI	Lightning / Energetic particles			
ARAD	– Ablation monitor – on TPS			
DWE	 Doppler wind experiment 			
OPH	– Ortho-Para Hydrogen			
TLS	- Tunable laser spectrometer			
IMG	– Imaging			

Carrier: Flyby or Orbiter				
MWR	- Microwave radiometer			
GRV	Gravity mapping			
MAG	– Magnetometer			
SSI	– Imaging			
DWE	 Doppler Wind Experiment 			

- This might be an oversubscribed strawman payload set
- The actual number of instruments would be dictated by the final design and mission cost allocation for New Frontiers missions
- In previous studies we assumed the same instrument sampling rate per distance traveled as used on the Galileo probe (this will be reassessed based on the telecom option)

Key Mission Architecture Trades

Each of these mission architecture trade option has significant impacts on the mission, with distinct advantages and limitations. There isn't a single best solution yet.

Getting there: Trajectory options

Generic Trajectory Information

- Trajectory options:
 - Direct trajectory
 - delivered mass too low (less than 100 kg)
 - Gravity Assists
 - Inner planets Gravity Assist
 - Earth & Venus
 - With or without additional (+dV)
 - Jupiter GA + inner planet(s) GA + (dV)
 - This option is not available after 2017
 - Jupiter & Saturn: alignment in every 19 years
 - » 1978 1997 2016 2035
 - » Last opportunity for JGA: Jan. 2017

Direct-to-Earth vs. Relay Trajectory Trades

- <u>Different trajectory strategies</u> are required <u>for Direct-to-Earth (DTE) and Relay</u> telecom:
 - For Relay telecom from probes:
 - Benefit from Jupiter GA
 - Reduced eccentricity
 - Shorter trip time, higher delivered mass
 - Telecom: from probe → to carrier → to Earth
 - No visibility between probe and Earth!

- For DTE telecom from probes:
 - Can't use Jupiter GA;
 - Type II trajectory for DTE probe access
 - Longer trip time to achieve suitable probe trajectory for DTE telecom
 - Telecom: Visibility to Earth for DTE link

Ref: T.S, T.B., T.K

EARTH / SUN

Trajectory options for Relay and DTE telecom

Pre-decisional - for discussion purposes only

Page: 11

EARTH / SUN

Representative Relay Trajectory: EEJS 6.3-years

- Representative baseline trajectory
 - EEJS; ~685 m/s DSM
 - December 2015 Launch
 - − ~6.3-yr flight time
 - Probes enter on the dark side No DTE
 - Supports Relay telecom option
 - SEP option → delivers ~30% more mass ₋₂

Launch Vehicle	Delivered Mass*	
Delta IV - 4050H	4411 kg	
Atlas V - 551	3073 kg	
Atlas V - 521	2124 kg	
Atlas V - 401	1566 kg	
Delta IV - 4040-12	956 kg	

^{*}Deterministic and optimal performance values; does not include statistical estimates or a 21-day launch period analysis

Point design could result in a smaller Launch Vehicle, thus reducing cost

Y (AU)

-6

-8

-10

Representative Relay Trajectory: Flyby /w Probes

What would a DTE trajectory look like?

Example Chemical Trajectory to Saturn Flight time >9 years

Example Solar Electric Propulsion Trajectory to Saturn Flight time ~ 6 years

BUT,

- These trajectories will not get the probes close to the sub-Earth point!
- For that we need a Type 2 trajectory, which could increase the flight time by about and estimated 2 to 6 years (TBD)
- Longer flight times are required to reach optimal sub-Earth point for Direct-to-Earth telecom
- Non-optimal off-sub-Earth point could impact telecom / feasibility

Other Issues: Ring Crossing / Particle Collision Risk

Ring Crossing:

At Clear gaps, e.g., between rings F & G; or inside the D-ring are considered lower risk

Ring Collision:

Juno-like elliptic orbit: would precess faster due to Saturn's obliqueness

Flyby missions:

Lower risk: require one ring crossing

Orbiter missions:

Higher risk: require multiple orbits / ring crossings

Pre-decisional - for discussion purposes only

Key Mission Drivers for the Carrier Spacecraft

Microwave Radiometry: MWR Requirements

- Close proximity to Saturn is required for effective MWR measurements:
 - E.g., Juno performs MWR measurements from 60,000 km to 4,000 km
 - The studied architectures are too far (~100,000 km to ~200,000 km when crossing between F & G gap)
- Perpendicular spin to flight direction is required (Juno operational heritage)
 - For scanning sky, limb & atmosphere
 - For scanning same cloud location from various angles
 - Spinning probe mounted MWR do not satisfy this
- Polar flyover is desirable (but not necessary)
 - Polar flyover or flyby allows for magnetometer measurements (desirable)
 - Studied architectures do not satisfy this
- Multiple MWR measurements are desirable (but not necessary)
 - This would require an orbiter

Ref: Scott .J. Bolton, Tristan Guillot, Michel Blanc, & the JUNO team, Juno Presentation Juno Presentation to the SSWG to the SSWG, April 20th, 2006, ESA HQ, Paris Page: 17

Microwave Radiometry at Saturn: Antenna Selection

- Primary science goal: → measure water abundance to 100 bars
- Microwave radiometry: \rightarrow remote sensing of H₂O, NH₃ (hard to separate)
- MWR antenna size NOT KNOWN; must be resized for Saturn
- Weighting functions: NOT KNOWN; must be recalculated for Saturn
- **Environment:** No Radiation at Saturn simplifies MWR compared to Jupiter
- Heritage: Similar instrument will fly on Juno, but here a new design is required

Ref: PSSS-2 (2006)

Pre-decisional - for discussion purposes only

Ref: Atreya, S. (2006)

Gravity & Magnetic Field Measurement Requirements

- Magnetic field and magnetospheric measurements:
 - Science priority drives the inclusion of these measurements
- Magnetic and gravity field lines:
 - Polar trajectory is required
 - Orbiter → multiple pass → desirable, but mission impacts (e.g., complexity, cost)
 - Flyby → single pass only → limited science benefit
- Inner radiation belt:
 - Near equatorial trajectory, with less than 30° inclination

Passing through **field lines**:

- DTE architecture suitable: decouples probes and carrier
- Relay architecture alone: does not support polar flyby

Inner radiation belt:

- Relay architecture: suitable, simple, short cruise
- DTE architecture: not suitable if targets polar flyby/orbiter trajectory

Power Systems: for a Saturn Flyby S/C /w Relay Telecom

- Solar Panels on a flyby s/c with relay telecom
 - Before Saturn:
 - Solar panels would generate power during cruise
 - Operation: checks in every 3 weeks, when operating from solar power and secondary batteries

– At Saturn:

- Flyby s/c science operations would be ~6 hours near Saturn (telecom and MWR on carrier)
 - Preliminary studies indicate that this could be done with primary batteries; i.e., solar panels are not required for this operational phase

– After Saturn:

 If collected data is not down-linked during a single pass using batteries, the solar panels could trickle charge the batteries and send the data back in subsequent passes

Flyby + Relay telecom based architecture can be supported with batteries, with LILT solar panels for backup during non-mission critical modes

Power systems for an orbiter architecture can be significantly more challenging and the feasibility should be assessed accordingly

Key Mission Drivers for the Probes

Probe Design: Galileo Probe Heritage Assumed

Stable OSC

0 0

-2 Thermal Batteries
(Behind LRD, NEP, and ASI)

Antenna

Item / Subsystem	Mass (kg)	Mass Subtotals (kg)
Deceleration Module	221.8	
Forebody heat shield	152.1	
Afterbody heat shield	16.7	
Structure	29.2	
Parachute	8.2	
Separation hardware	6.9	
Harness	4.3	
Thermal control	4.4	
Descent module	117.1	
Communications subsystem	13.0	
C&DH subsystem	18.4	
Power subsystem	13.5	
Structure	30.0	
Harness	9.1	
Thermal control	4.3	
Science instruments	28.0	
Separation hardware	0.9	
Probe Total		338.9

Science Instruments:

(ASI)

Atmosphere structure instrument

(NEP)

Nephelometer

(HAD)

Helium abundance detector

(NFR)

Net flux radiometer

(NMS)

Neutral mass spectrometer

(LRD/EPI)

Lighting and radio emission detector/ energetic particle detector

Ref: Galileo Probe Deceleration Module Final Report, Doc No. 84SDS2020, General Electric Re-entry Systems Operations, 1984 AIAA, "Project Galileo Mission and Spacecraft Design", Proc. 21st Aerospace Science Meeting, Reno, NV, January 10-13, 1983 Ames Research Center

Probe Entry / Aeroshell / TPS

Entry direct.	Latitude deg	Rel. entry V, km/ s	Max diameter, m	Entry mass, kg	Max. heat rate*, kW/cm ²	Forebody TPS mass fraction	Est. total TPS mass fraction ⁺ (+ zero margins)	Max. decel., g
Pro.	6.5°	26.8	1.265	335	2.66	23.5%	25.8%	43.6
Pro.	-45°	29.6	1.265	335	3.67	24.8%	27.3%	47.9
Retro.	6.5°	46.4	1.265	335	21.5	35.2%	38.7%	76.4

- TPS availability for Galileo size probes H/S were confirmed by NASA ARC
 - C-P for <u>prograde entry can be supported</u> (heating rate about 10% of Galileo's)
 - Retrograde heat flux might be too high to support with current testing facilities
- TPS requirement at Saturn is less demanding than at Jupiter
- TPS mass-fractions for prograde entry is about 30% less than Galileo's
- Max. heating rates and max. g load about 35% of Galileo's
- **Heating pulse** about **2.5 times longer** due to scale height difference
- Saturn probes have less ablation, but need more insulation
- Time to parachute deployment is about 5 minutes

Probe Descent time vs. Altitude Down to 30 bars (10 bars required)

- If free fall begins at pressure of 1 bar, it will take ~70 minutes from entry to reach 10 bars
- For better probe stability, the freefall phase could be replaced with descent with a drogue parachute (This requires further analysis)
- If the descent is entirely on the parachute, it will take ~2.5 hours to reach 10 bars

Prepared by T. Balint, JPL – June 7, 2007

Zenith Attenuation Based on Ammonia at 6x Solar Abundances

- Saturn's scale height is
 - ~2x that of Jupiter's
 - ~45 km at the pressures of interest
- Saturn has
 - -no radiation environment
 - -no synchrotron radiation, thus we can use low (UHF) frequencies
- Zenith attenuation of radio signal as a function of probe depth (measured by atmospheric pressure), based on concentrations at 6 times solar abundances

Attenuation (w/o margin) at p=10 bar

UHF (400 MHz): ~1.2 dB

S-band (2 GHz): ~31 dB

Ref: Tom Spilkner, JPL, 2006

Relay Telecom

Data rates

Probe 1: 1024 bps (~3.7Mb) Probe 2: 512 bps (~1.9Mb)

Data volume

Total from 2 probes: ~6.3Mb

35W X-ban DTE for science and telemetry 3 m HGA for downlink (MGA & LGA emergency links)

Frequency:
UHF 401 MHz
Antenna:
UHF LGA

Probe hardware:

Electra-lite (20W)

34 meter DSN

- "Store and dump" operation
- Probes has NO line of sight with Earth
- All data downloadable within the first two hours of a single tracking pass

Direct-To-Earth Telecom

DTE Telecom feasibility is influenced by:

- Probe telecom power
- Probe antenna size
- Probe antenna design
- Ground antenna size
- Separation distance
- Atmospheric absorption
- Solar plasma
- other link losses

Low frequency (e.g., UHF is required to mitigate atmospheric absorption)

Conventional telecom design / configuration explored in these studies did not support DTE telecom!

LARGE ground based UHF antenna arrays are required

Unconventional telecom design for DTE could be explored in future studies.

A solution – if exists – may require new component designs & qualification of telecom system elements

Ref: David Morabito, Anil Kantak and Arv Vaisnys, FY06

Approach to Keep Mission Cost Below the NF Cap

- Assume / use mission, instrument and design heritage when possible, for example:
 - Galileo probe (instruments, power system (batteries), descent module)
 - TPS (use existing material (carbon phenolic) from NASA ARC)
 - Juno (LILT solar panels, microwave radiometer)
 - Electra (telecom from Mars Program)
- Minimize science instruments or instrument cost
 - Descope towards minimum science requirements
 - Allow for contributed instruments
- Simplify mission architecture
 - Shorter flight times reduce operations costs
 - Use a flyby instead of an orbiter
 - Drop down in Launch Vehicles (by minimizing spacecraft mass)
 - Use identical probes

Conclusions & Recommendations

- NASA funded studies in support of NASA's SSE Roadmap and Planetary Program Support activities, proved the feasibility of a NF class Saturn probe mission
- A number of mission architectures could be suitable for this mission, e.g.,
 - Probe Relay based architecture with short flight time (~6.3-7 years)
 - DTE probe telecom based architecture could be assessed by the flight time is expected to be significantly longer (~11+ years – TBD),
 - Probes decoupled from the carrier, allowing for polar trajectories / orbiter.
 - Past studies proved this option not feasible, but unconventional telecom approaches may prove to be useful.
 - Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return
- The Saturn probes mission is expected to be identified in NASA's New Frontiers AO
- Thus, further studies are recommended to refine the most suitable architecture
- International collaboration is started through the KRONOS proposal work under ESA's Cosmic Vision Program

